
  



 
 
 
Development Standards & Practices Used 

● Agile Development 

● Test-Driven Development 

Summary of Requirements 
Functional requirements 

Overall requirements 

● The drone must be able to track intended object/person 

● The drone must identify any obstacles to avoid 

● The ability to control the camera during the object tracking 

Drop requirements 

● The drop must take off and land entirely autonomously 

● Must be able to carry a microcontroller and GPU 

Camera requirements 

● Must be able to feed in the video frame sequentially  

● The camera must capture everything during the flight 

User Interface requirements 

● The user should be able to easily find the power switch 

● The user can accesses the camera data  

Applicable Courses from Iowa State University Curriculum  
● CS 575 (Computational Perception) - Computer Vision 

● CS 518 (Computational Geometry) - Geometric Structures 

● CS 577 (Applied Advanced Techniques for CS) - Coordinate Math 

● CS 472 (Artificial Intelligence) - Decision Making 

New Skills/Knowledge acquired that was not taught in courses 
● Reinforcement Learning (Network Architectures, Reward Policy, etc) 

● Unreal Engine (Simulation Environment) 

● Airsim (Simulation Learning with Drone)  
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List of figures/tables/symbols/definitions (This should be the similar to the 
project plan) 

Figure 1. Diagram of the Drone System 
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1 Introduction 

1.1  ACKNOWLEDGEMENT 

It is acknowledged that the SwAPP Lab, directed by advisor Dr. Ali Jannesari is the key source 
providing the GPU that the simulation is primarily training on, and the drone equipment that will 
be used for testing and executing the real-world code demo. 

1.2  PROBLEM AND PROJECT STATEMENT 

Our project seeks to build on and improve the results found in [4] and to develop an edge 
computing drone capable of AI application. That is, we seek to build a drone that uses 
reinforcement learning and computer vision to follow an object, e.g a human, while avoiding 
obstacles and staying in the air.  

To solve this problem, we first create a simulation in order to cheaply test the reinforcement 
learning algorithm we have developed. Once the simulation testing provides the desired results, we 
move on to the creation of the drone and the loading of the reinforcement learning algorithm onto 
the drone in order to test this in the real world. 

1.3  OPERATIONAL ENVIRONMENT 

This drone will be expected to follow an object, e.g a human, both indoors and outdoors. Outdoors, 
we will expect the drone to stay in the air and follow the appropriate object in the presence of wind 
and in most lighting conditions. We will not assume certain times of day nor weather affecting 
lighting conditions in the final product. However, this drone will not be required to follow an 
object in complete darkness.  

1.4  REQUIREMENTS 

Functional requirements 

Overall requirements 

● The drone must be able to track intended object/person  
● The drone must identify any obstacles to avoid 
● The ability to control the camera during the object tracking 

Drone requirements 

● The drone must take off and land entirely autonomously 
● Must be able to carry a microcontroller and GPU 

Camera requirements 

● Must be able to feed in the video frame sequentially  
● The camera must capture everything during the flight 

User Interface requirements 

● The user should be able to easily find the power switch 
● The user can accesses the camera data  

 



 

1.5  INTENDED USERS AND USES 

With the nature of this being strictly a research project, we do not have a specific end user or use in 
mind. However, we know that the results of this project may be used in wildlife tracking.  

1.6  ASSUMPTIONS AND LIMITATIONS 

Assumptions: 

● The real drone will fly in an open area outside where there aren’t safety concerns. 
● There will be a kill switch on the drone to take over if there is concern. 
● The drone will fly in a day environment with proper lighting to see obstacles and persons, 

but not too bright to blind the camera. 

Limitations: 

● The drone cannot be flown indoors, so the weather must meet the right conditions. 
● The simulation training takes a long time to train, so development can be slow. 
● The outdoor environment must be similar to the simulation for easier transfer learning. 
● The drone is limited to a short flight time outdoors due to the battery size. 
● Computation power is limited by the Jetson TX2 and battery power, so networks must be 

small enough to run in real-time. 

1.7  EXPECTED END PRODUCT AND DELIVERABLES 

Our end product shall be two separate entities: a drone capable of following an object in most 
environments, and a reinforcement learning algorithm that builds off of previous work.  

The drone will be a physical drone that runs off of the Nvidia Jetson TX2 module, capable of 
following an object in most environments. This drone will be relatively unlikely to fail as the code 
running on it is based off of at least 1 year of testing in a simulation environment. This will be 
finished in late April 2021. 

The reinforcement learning algorithm will be code written in Python that runs on the Nvidia Jetson 
TX2 module. This code is what controls the drone, keeps it in the air, and allows it to follow an 
object using computer vision. This code will be the culmination of over 1 year of effort and is 
expected to be finished in late April 2021.  

2 Project Plan 

2.1 TASK DECOMPOSITION 

The plan for this project is to train an unmanned aerial vehicle to follow a specified object. The goal 
is to use vision based deep reinforcement learning to implement the training process for the UAV. 
The UAV being used in development is in the form of a 4 propeller blade drone. Due to the nature 
of this type of drone we must implement the training in a virtual environment to ensure the safety 
of all involved including the drone. Our virtual environment will be implemented using Microsoft 
AirSim coupled Unreal Engine 4. 

 



2.2 RISKS AND RISK MANAGEMENT/MITIGATION 

Current risks include drone collision, reward function not inadequacy, software bugs and software 
incompatibility. Drone collisions are expected during training, due to the nature of reinforcement 
learning, so training will always be done virtually in order to save money and effort. The probability 
of the reward function not being adequate is 0.5 and in this case a new or added reward function(s) 
will be researched and implemented. Since this projects virtualization software has been heavily 
tested, bugs and incompatibility have a low rating of 0.1 

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA 

● Virtual environment setup and usable on all team members workstations 
○ Clone AirSim 
○ Clone Unreal Engine 
○ Clone Project Repo 

● Develop reward function to help drone learn efficiently 
○ Research different reward functions for vision based RL 
○ Implement new function(s) 
○ Run and test until satisfactory results are obtained 
○ Run in real world environment 

 



2.4 PROJECT TIMELINE/SCHEDULE 

 

Development of environment for 
testing 

October 2020 

Deciding specific actions and 
rewards 

October 2020 

Training the proposed algorithm 
on the environment and testing 
novel environments 

November 2020 

 



Transfer algorithm onto Jetson 
TX2  

February-March 2021 

Project Completion April  2021 

2.5 PROJECT TRACKING PROCEDURES 

Our team plans to use GitLab, Zoom and Group me to keep track and communicate during 
completion of the project. Git will be used as our version control system and as our wiki where we 
share findings and information. GitLab’s issue and board feature will be used as a task manager. 
Zoom will be used for video-based conferencing with our project supervisor. Group me will be used 
for text communication among our team.  

2.6 PERSONNEL EFFORT REQUIREMENTS 

 

Task Description Estimated person-hours 

Development of environment 
for testing 

The simulation subteam of 
our team needs to bugtest our 
simulation environment 

20 

Deciding specific actions and 
rewards 

The reinforcement learning 
subteam further modifies the 
already-implement learning 
algorithm looking for more 
optimalities 

30 

Training the proposed 
algorithm on the environment 
and testing novel 
environments 

Running the python script on 
the simulation environment 
created in order to train the 
neural network. This will not 
require a significant amount 
of interaction, and will mostly 
be a computer executing the 
code hence the low amount of 
person-hours. 

1 

Transfer algorithm onto Jetson 
TX2  

Transferring our 
reinforcement learning code 
onto the Jetson TX2. This will 
mostly involve porting our 
code to the platform and 
dealing with the peculiarities 
that arise.  

30 

 



Project Completion Testing the drone in the real 
world and ensuring its 
effectiveness 

10 

 

2.7 OTHER RESOURCE REQUIREMENTS 

This project additionally requires a VPS provisioned from ITS in order to run our simulation 
environment. Alternatively, a personal computer can be used if it has sufficient computing power, 
such as a GPU for training the neural networks with the simulation environment. Hard Drive space 
is also a concern at the full size of the project clocking in at about 130 Gigabytes. 

2.8  FINANCIAL REQUIREMENTS 

The drone equipment and training GPU have been provided by our advisor’s lab. There may be 
additional funds needed in the future to help acquire materials and designs for the Unreal Engine 4 
environments. 

3  Design 

3.1 PREVIOUS WORK AND LITERATURE 

Our project makes use of work done by previous design students.  This has had both benefits and 
shortcomings.  

Benefits 

● The technologies needed have already been decided upon 
● A lot of the project has already been developed 

○ The model is mostly done and just needs some troubleshooting / refining and 
more environments are needed to train future versions of the model 

Shortcomings 

● Uses deprecated libraries 
○ Some of the libraries utilized in the project are using old versions of Unreal Engine 

which does not run on modern operating systems 
● Need to invest time to understand the current codebase 

The Project also makes use of some previous models that have had similar tasks that ours has. The 
main paper [4], uses an end-to-end network architecture to take in camera frames and output 
controls to the drone for tracking the person object. This is different from other approaches as it is 
all combined into a single network rather than several stages of control decision logic. The paper 
makes use of reinforcement-learning algorithms to avoid the tedious, expensive cost of labeling 
images manually for training. The key design they use in this paper is a ConvNet-LSTM. Our 
project will use a related approach to this architecture with customized networks and reward 
functions. 

 



3.2 DESIGN THINKING 

Define Stage 
This project was already started by our advisor’s research lab and worked on by former year senior 
design groups, so there was not as much discussion for our defined stage since we inherited the 
previous semesters point-of-view. This point-of-view can be stated as “Design a model for a UAV 
that can follow a mobile object.” 

Ideate Stage 
Since our project is a hand me down from a previous design group we did not have say in what 
ideas we were to implement to solve the point-of-view statement.  Ultimately though the previous 
design team decided upon deploying a deep learning model trained using reinforcement learning in 
a simulated environment to a UAV.  

3.3  PROPOSED DESIGN 
The current design that the group is implementing is one that follows the following functional and 
non-functional requirements. 

Functional Requirements 

● Ability to follow another object 
● Ability to fly 
● Ability to carry a microcontroller and GPU 

Non-functional Requirements 

● Should be able to fly and avoid objects in the environment 
● Model should be small enough to fit on our microcontroller 

Model 
Thus far our team has a model that was created using a network and reward function that were 
implemented with Google’s Tensorflow library. The current architecture uses a D3QN network 
based on Deep-Q reinforcement learning. This uses two networks that are being run and trained 
simultaneously. There is also a convolutional neural network on top of this that uses a mobile-net 
SSDv3 detector to find the people in the frame and draw boxes around them. The location of the 
person is then used to reward the reinforcement learning networks to train it to keep a specified 
distance from the person in view while avoiding obstacles. 
 
Training Environments 
An environment is needed to train the model.  For this our team is simulating environments using 
Unreal Engine paired with Microsoft Airsim to communicate with the model.  The environments 
that our team designed are such that the model will encounter problems that one might expect it 
to encounter in the real world.  This will help ensure the model is trained to properly operate 
outside of the simulated environments while also increasing the efficiency at which we can conduct 
training.  Furthermore there is some degree of randomness in the simulation to help try to prevent 
overfitting. 

3.4 TECHNOLOGY CONSIDERATIONS 

There are a plethora of software for making and training machine learning models.  Our team 
decided to use Tensorflow since it is one of the simplest to use machine learning frameworks 
available.  Furthermore Tensorflow has very good documentation and an active community that 
can help ease the bug fixing process.  Unreal Engine and Airsim were chosen as a pair because 
together they will make training and testing the model a very robust process.  Since we can design 

 



environments for Unreal Engine we are not constrained like with it’s alternatives, such as using a 
video game that involves flying.  Airsim is also a great technology that gives our model access to an 
API that streamlines a lot of the problems that might arise from trying to develop our own software 
for a model to interface with a simulation environment. 

3.5 DESIGN ANALYSIS 

Thus far our team has run into many issues regarding design.  Since we inherited this project from 
the senior design group of a previous semester there are a lot of issues that were left to be resolved 
along with parts of the project that have yet to be implemented.  
 

Environment Issues 
Since this project was inherited from a previous design group, they started developing using 
technology that was available to them at the time.  However they did not update to newer versions 
of the software as it was released.  This has caused trouble when trying to set up the simulation 
environments on our computers since we need to either update their code or revert our operating 
systems to earlier versions.  The team is currently working on getting servers set up so that we can 
remote in to work on the environments since the team does not have the computers to do this 
ourselves. 
 

Model Issues 
An issue our team is currently working on resolving with respect to the model is trying to stop the 
UAV from flying too low to the ground or too high above the target object. Alongside this we are 
having trouble with the UAV colliding into obstacles, especially if it has trained for an extended 
period of time.  The team believes that both these issues might be results of having an unrefined 
reward function and are trying to update it.  Another possibility is the learning rate for training 
may be set at too high of a value since this would result in an overshooting of the minima of the 
cost function for our model. 

3.6  DEVELOPMENT PROCESS 

Our process will use agile methodologies and Test-Driven Development for our development 
process.  We chose these both because they are quickly becoming industry standards and because 
of team-members familiarity with them.  Test-Driven Development will be beneficial to us in 
ensuring the creation of high-quality code that works as expected in accordance with our 
functional requirements.  Agile development practices will work well to organize the team's efforts 
around biweekly sprints in line with our biweekly reports.  This will additionally facilitate stand up 
meetings twice a week, one with our project advisor and one without. 

3.7  DESIGN PLAN 

Our design plan is for a system where the drone is successfully able to fly around the environment 
and dodge obstacles to avoid collisions.  Our architecture is best described by the illustration in 
Figures one and two in the appendix.  Figure one illustrates a use-case diagram of how the user 
interacts with the drone through the automated system and through normal RC control.  It 
illustrates the design decisions of architecting a server connected to the drone.  The server 
communicates MavLink command messages to the drone while the drone sends raw images back 
to the server for computation. 

Figure two illustrates the architectural diagram of the project.  It illustrates how the server handles 
the computation of images using the reinforcement learning model and turns them into action 

 



commands for the drone to execute.  The drone itself faces the constraint of low processing power, 
so it instead uses remote computation in this design structure.  This however faces its own 
challenges of potential latency between taking an image and executing the commands to “steer” the 
drone.  

4  Testing  

4.1  UNIT TESTING 

– The simulation environment can involve several aspects of testing independently of training the 
deep neural network models 

– The camera and perception aspects of the sensors on the virtual drone can be tested to ensure the 
environment is working as it should 

4.2  INTERFACE TESTING 

 The primary interface is between the simulation environment and the deep neural networks 
during the training phase. This interface includes communication in both directions for the 
reinforcement learning networks program to receive the sensory information such as the camera, 
depth sensor, and other drone speed items. Additionally, the program is sending commands the 
other direction to the simulator to tell the drone which way to move (left, right, forward, etc). 

4.3  ACCEPTANCE TESTING 
The ability to receive sensor information and video frames from the environment will be a 
required test to demonstrate that the drone should also be able to operate in a real-world setting 
without as opposed to just in the simulation. The other direction of information with drone 
commands will also be an important test to ensure the program will be able to control the real 
drone. 

4.4  RESULTS 

In the virtual training environment, the drone is focused on obstacle avoidance. So far, the drone is 
having problems properly avoiding the wall obstacles, furthermore it also sometimes crashes into 
the floor. As part of this iterative development process, we are revising the reward policy for the 
reinforcement learning and looking to add a better network for determining the altitude of the 
drone to avoid hitting the ground. 

5  Implementation 
The current implementation is focused on developing the reinforcement learning architecture and 
reward function further in addition to adding new environments for simulation. The additional 
environments will help the drone to generalize for better performance on future unseen 
environments and conditions. This will be necessary especially once the transfer learning happens 
next semester with going from simulation to the real world. 

Based on the target timeline, next semester will be primarily focused on performing transfer 
learning from the simulation to the real-world drone to fly in the real outdoors instead of a virtual 

 



simulation environment. The transition to the real world will require porting the networks over to 
run efficiently on a Jetson TX2 edge GPU computing device that will be on-board the drone. The 
drone is using the same style of stereo depth camera that is used in the simulation, so this should 
transfer over well for the drone to perceive the real world outdoors. The depth information will 
pass through the networks the same way and the drone will perform the decisions of moving left, 
right, forward, etc from the output of the neural networks. It is possible that we will then work to 
adapt it to track additional objects other than just people. These objects could include cars, other 
drones, or other moving objects. These would be trained in the simulation first and then transfer 
learning would be applied to adapt this to run on those objects in the real world. 

6  Closing Material 

6.1 CONCLUSION  

Currently the simulation team has completed setting up the environment in the unreal engine for 
the simulation, while the reinforcement learning team has read through the current algorithm to 
better understand what is causing crashing issues. The reinforcement learning team is actively 
reading multiple research papers to learn more about reward function implementations to better 
solve this crashing issue. Our upcoming plans are split into two for the different sub teams. The 
simulation team will be working on creating various environments to run the simulation, starting 
with a small empty room and then adding more obstacles in the environment down the line. The 
reinforcement learning team will be working on the reward function implementation and then 
work on the reinforcement learning algorithm to ensure the drone maintains a set distance for all 
obstacles and tracks the person from a safe distance. 
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Figure 1. Diagram of the drone system 

The pilot has access to an RC controller, which will send input to the RC receiver on the 
drone. This input will go to the Pixhawk controller which then sends a message to the droneserver 
application. This server application takes in commands from multiple locations, including another 
user using ssh to access the drone, the reinforcement learning algorithm output, and as previously 
mentioned the Pixhawk controller to send commands to the drone about movement. As shown in 
the diagram, the rotors on the drone are directly controlled by the PIxhawk controller. The part our 
team specifically is working on is the RLA, which takes in input from the ZedCamera mounted on 
the drone and makes decisions on where the drone should go accordingly. Once it makes the 
decision, it sends a signal to the DroneServer which then sends a signal to the Pixhawk controller 
which controls the rotors.  

 

 



Figure 2. Diagram of the system architecture 

 


