

Development Standards & Practices Used

● Agile Development

● Test-Driven Development

Summary of Requirements
Functional requirements

Overall requirements

● The drone must be able to track intended object/person

● The drone must identify any obstacles to avoid

● The ability to control the camera during the object tracking

Drop requirements

● The drop must take off and land entirely autonomously

● Must be able to carry a microcontroller and GPU

Camera requirements

● Must be able to feed in the video frame sequentially

● The camera must capture everything during the flight

User Interface requirements

● The user should be able to easily find the power switch

● The user can accesses the camera data

Applicable Courses from Iowa State University Curriculum
● CS 575 (Computational Perception) - Computer Vision

● CS 518 (Computational Geometry) - Geometric Structures

● CS 577 (Applied Advanced Techniques for CS) - Coordinate Math

● CS 472 (Artificial Intelligence) - Decision Making

New Skills/Knowledge acquired that was not taught in courses
● Reinforcement Learning (Network Architectures, Reward Policy, etc)

● Unreal Engine (Simulation Environment)

● Airsim (Simulation Learning with Drone)

Table of Contents
1 Introduction 4

1.1 Acknowledgement 4

1.2 Problem and Project Statement 4

1.3 Operational Environment 4

1.4 Requirements 4

1.5 Intended Users and Uses 4

1.6 Assumptions and Limitations 5

1.7 Expected End Product and Deliverables 5

2 Project Plan 5

2.1 Task Decomposition 5

2.2 Risks And Risk Management/Mitigation 6

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 6

2.4 Project Timeline/Schedule 6

2.5 Project Tracking Procedures 6

2.6 Personnel Effort Requirements 7

2.7 Other Resource Requirements 7

2.8 Financial Requirements 7

3 Design 7

3.1 Previous Work And Literature 7

3.2 Design Thinking 7

3.3 Proposed Design 7

3.4 Technology Considerations 8

3.5 Design Analysis 8

3.6 Development Process 8

3.7 Design Plan 8

4 Testing 9

4.1 Unit Testing 9

4.2 Interface Testing 9

4.3 Acceptance Testing 9

4.4 Results 9

5 Implementation 10

6 Closing Material 10

6.1 Conclusion 10

6.2 References 10

6.3 Appendices 10

List of figures/tables/symbols/definitions (This should be the similar to the
project plan)

Figure 1. Diagram of the Drone System

Figure 2. Diagram of the System Architecture

1 Introduction

1.1 ACKNOWLEDGEMENT

It is acknowledged that the SwAPP Lab, directed by advisor Dr. Ali Jannesari is the key source
providing the GPU that the simulation is primarily training on, and the drone equipment that will
be used for testing and executing the real-world code demo.

1.2 PROBLEM AND PROJECT STATEMENT

Our project seeks to build on and improve the results found in [4] and to develop an edge
computing drone capable of AI application. That is, we seek to build a drone that uses
reinforcement learning and computer vision to follow an object, e.g a human, while avoiding
obstacles and staying in the air.

To solve this problem, we first create a simulation in order to cheaply test the reinforcement
learning algorithm we have developed. Once the simulation testing provides the desired results, we
move on to the creation of the drone and the loading of the reinforcement learning algorithm onto
the drone in order to test this in the real world.

1.3 OPERATIONAL ENVIRONMENT

This drone will be expected to follow an object, e.g a human, both indoors and outdoors. Outdoors,
we will expect the drone to stay in the air and follow the appropriate object in the presence of wind
and in most lighting conditions. We will not assume certain times of day nor weather affecting
lighting conditions in the final product. However, this drone will not be required to follow an
object in complete darkness.

1.4 REQUIREMENTS

Functional requirements

Overall requirements

● The drone must be able to track intended object/person
● The drone must identify any obstacles to avoid
● The ability to control the camera during the object tracking

Drone requirements

● The drone must take off and land entirely autonomously
● Must be able to carry a microcontroller and GPU

Camera requirements

● Must be able to feed in the video frame sequentially
● The camera must capture everything during the flight

User Interface requirements

● The user should be able to easily find the power switch
● The user can accesses the camera data

1.5 INTENDED USERS AND USES

With the nature of this being strictly a research project, we do not have a specific end user or use in
mind. However, we know that the results of this project may be used in wildlife tracking.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:

● The real drone will fly in an open area outside where there aren’t safety concerns.
● There will be a kill switch on the drone to take over if there is concern.
● The drone will fly in a day environment with proper lighting to see obstacles and persons,

but not too bright to blind the camera.

Limitations:

● The drone cannot be flown indoors, so the weather must meet the right conditions.
● The simulation training takes a long time to train, so development can be slow.
● The outdoor environment must be similar to the simulation for easier transfer learning.
● The drone is limited to a short flight time outdoors due to the battery size.
● Computation power is limited by the Jetson TX2 and battery power, so networks must be

small enough to run in real-time.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

Our end product shall be two separate entities: a drone capable of following an object in most
environments, and a reinforcement learning algorithm that builds off of previous work.

The drone will be a physical drone that runs off of the Nvidia Jetson TX2 module, capable of
following an object in most environments. This drone will be relatively unlikely to fail as the code
running on it is based off of at least 1 year of testing in a simulation environment. This will be
finished in late April 2021.

The reinforcement learning algorithm will be code written in Python that runs on the Nvidia Jetson
TX2 module. This code is what controls the drone, keeps it in the air, and allows it to follow an
object using computer vision. This code will be the culmination of over 1 year of effort and is
expected to be finished in late April 2021.

2 Project Plan

2.1 TASK DECOMPOSITION

The plan for this project is to train an unmanned aerial vehicle to follow a specified object. The goal
is to use vision based deep reinforcement learning to implement the training process for the UAV.
The UAV being used in development is in the form of a 4 propeller blade drone. Due to the nature
of this type of drone we must implement the training in a virtual environment to ensure the safety
of all involved including the drone. Our virtual environment will be implemented using Microsoft
AirSim coupled Unreal Engine 4.

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

Current risks include drone collision, reward function not inadequacy, software bugs and software
incompatibility. Drone collisions are expected during training, due to the nature of reinforcement
learning, so training will always be done virtually in order to save money and effort. The probability
of the reward function not being adequate is 0.5 and in this case a new or added reward function(s)
will be researched and implemented. Since this projects virtualization software has been heavily
tested, bugs and incompatibility have a low rating of 0.1

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

● Virtual environment setup and usable on all team members workstations
○ Clone AirSim
○ Clone Unreal Engine
○ Clone Project Repo

● Develop reward function to help drone learn efficiently
○ Research different reward functions for vision based RL
○ Implement new function(s)
○ Run and test until satisfactory results are obtained
○ Run in real world environment

2.4 PROJECT TIMELINE/SCHEDULE

Development of environment for
testing

October 2020

Deciding specific actions and
rewards

October 2020

Training the proposed algorithm
on the environment and testing
novel environments

November 2020

Transfer algorithm onto Jetson
TX2

February-March 2021

Project Completion April 2021

2.5 PROJECT TRACKING PROCEDURES

Our team plans to use GitLab, Zoom and Group me to keep track and communicate during
completion of the project. Git will be used as our version control system and as our wiki where we
share findings and information. GitLab’s issue and board feature will be used as a task manager.
Zoom will be used for video-based conferencing with our project supervisor. Group me will be used
for text communication among our team.

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Description Estimated person-hours

Development of environment
for testing

The simulation subteam of
our team needs to bugtest our
simulation environment

20

Deciding specific actions and
rewards

The reinforcement learning
subteam further modifies the
already-implement learning
algorithm looking for more
optimalities

30

Training the proposed
algorithm on the environment
and testing novel
environments

Running the python script on
the simulation environment
created in order to train the
neural network. This will not
require a significant amount
of interaction, and will mostly
be a computer executing the
code hence the low amount of
person-hours.

1

Transfer algorithm onto Jetson
TX2

Transferring our
reinforcement learning code
onto the Jetson TX2. This will
mostly involve porting our
code to the platform and
dealing with the peculiarities
that arise.

30

Project Completion Testing the drone in the real
world and ensuring its
effectiveness

10

2.7 OTHER RESOURCE REQUIREMENTS

This project additionally requires a VPS provisioned from ITS in order to run our simulation
environment. Alternatively, a personal computer can be used if it has sufficient computing power,
such as a GPU for training the neural networks with the simulation environment. Hard Drive space
is also a concern at the full size of the project clocking in at about 130 Gigabytes.

2.8 FINANCIAL REQUIREMENTS

The drone equipment and training GPU have been provided by our advisor’s lab. There may be
additional funds needed in the future to help acquire materials and designs for the Unreal Engine 4
environments.

3 Design

3.1 PREVIOUS WORK AND LITERATURE

Our project makes use of work done by previous design students. This has had both benefits and
shortcomings.

Benefits

● The technologies needed have already been decided upon
● A lot of the project has already been developed

○ The model is mostly done and just needs some troubleshooting / refining and
more environments are needed to train future versions of the model

Shortcomings

● Uses deprecated libraries
○ Some of the libraries utilized in the project are using old versions of Unreal Engine

which does not run on modern operating systems
● Need to invest time to understand the current codebase

The Project also makes use of some previous models that have had similar tasks that ours has. The
main paper [4], uses an end-to-end network architecture to take in camera frames and output
controls to the drone for tracking the person object. This is different from other approaches as it is
all combined into a single network rather than several stages of control decision logic. The paper
makes use of reinforcement-learning algorithms to avoid the tedious, expensive cost of labeling
images manually for training. The key design they use in this paper is a ConvNet-LSTM. Our
project will use a related approach to this architecture with customized networks and reward
functions.

3.2 DESIGN THINKING

Define Stage
This project was already started by our advisor’s research lab and worked on by former year senior
design groups, so there was not as much discussion for our defined stage since we inherited the
previous semesters point-of-view. This point-of-view can be stated as “Design a model for a UAV
that can follow a mobile object.”

Ideate Stage
Since our project is a hand me down from a previous design group we did not have say in what
ideas we were to implement to solve the point-of-view statement. Ultimately though the previous
design team decided upon deploying a deep learning model trained using reinforcement learning in
a simulated environment to a UAV.

3.3 PROPOSED DESIGN
The current design that the group is implementing is one that follows the following functional and
non-functional requirements.

Functional Requirements

● Ability to follow another object
● Ability to fly
● Ability to carry a microcontroller and GPU

Non-functional Requirements

● Should be able to fly and avoid objects in the environment
● Model should be small enough to fit on our microcontroller

Model
Thus far our team has a model that was created using a network and reward function that were
implemented with Google’s Tensorflow library. The current architecture uses a D3QN network
based on Deep-Q reinforcement learning. This uses two networks that are being run and trained
simultaneously. There is also a convolutional neural network on top of this that uses a mobile-net
SSDv3 detector to find the people in the frame and draw boxes around them. The location of the
person is then used to reward the reinforcement learning networks to train it to keep a specified
distance from the person in view while avoiding obstacles.

Training Environments
An environment is needed to train the model. For this our team is simulating environments using
Unreal Engine paired with Microsoft Airsim to communicate with the model. The environments
that our team designed are such that the model will encounter problems that one might expect it
to encounter in the real world. This will help ensure the model is trained to properly operate
outside of the simulated environments while also increasing the efficiency at which we can conduct
training. Furthermore there is some degree of randomness in the simulation to help try to prevent
overfitting.

3.4 TECHNOLOGY CONSIDERATIONS

There are a plethora of software for making and training machine learning models. Our team
decided to use Tensorflow since it is one of the simplest to use machine learning frameworks
available. Furthermore Tensorflow has very good documentation and an active community that
can help ease the bug fixing process. Unreal Engine and Airsim were chosen as a pair because
together they will make training and testing the model a very robust process. Since we can design

environments for Unreal Engine we are not constrained like with it’s alternatives, such as using a
video game that involves flying. Airsim is also a great technology that gives our model access to an
API that streamlines a lot of the problems that might arise from trying to develop our own software
for a model to interface with a simulation environment.

3.5 DESIGN ANALYSIS

Thus far our team has run into many issues regarding design. Since we inherited this project from
the senior design group of a previous semester there are a lot of issues that were left to be resolved
along with parts of the project that have yet to be implemented.

Environment Issues
Since this project was inherited from a previous design group, they started developing using
technology that was available to them at the time. However they did not update to newer versions
of the software as it was released. This has caused trouble when trying to set up the simulation
environments on our computers since we need to either update their code or revert our operating
systems to earlier versions. The team is currently working on getting servers set up so that we can
remote in to work on the environments since the team does not have the computers to do this
ourselves.

Model Issues
An issue our team is currently working on resolving with respect to the model is trying to stop the
UAV from flying too low to the ground or too high above the target object. Alongside this we are
having trouble with the UAV colliding into obstacles, especially if it has trained for an extended
period of time. The team believes that both these issues might be results of having an unrefined
reward function and are trying to update it. Another possibility is the learning rate for training
may be set at too high of a value since this would result in an overshooting of the minima of the
cost function for our model.

3.6 DEVELOPMENT PROCESS

Our process will use agile methodologies and Test-Driven Development for our development
process. We chose these both because they are quickly becoming industry standards and because
of team-members familiarity with them. Test-Driven Development will be beneficial to us in
ensuring the creation of high-quality code that works as expected in accordance with our
functional requirements. Agile development practices will work well to organize the team's efforts
around biweekly sprints in line with our biweekly reports. This will additionally facilitate stand up
meetings twice a week, one with our project advisor and one without.

3.7 DESIGN PLAN

Our design plan is for a system where the drone is successfully able to fly around the environment
and dodge obstacles to avoid collisions. Our architecture is best described by the illustration in
Figures one and two in the appendix. Figure one illustrates a use-case diagram of how the user
interacts with the drone through the automated system and through normal RC control. It
illustrates the design decisions of architecting a server connected to the drone. The server
communicates MavLink command messages to the drone while the drone sends raw images back
to the server for computation.

Figure two illustrates the architectural diagram of the project. It illustrates how the server handles
the computation of images using the reinforcement learning model and turns them into action

commands for the drone to execute. The drone itself faces the constraint of low processing power,
so it instead uses remote computation in this design structure. This however faces its own
challenges of potential latency between taking an image and executing the commands to “steer” the
drone.

4 Testing

4.1 UNIT TESTING

– The simulation environment can involve several aspects of testing independently of training the
deep neural network models

– The camera and perception aspects of the sensors on the virtual drone can be tested to ensure the
environment is working as it should

4.2 INTERFACE TESTING

 The primary interface is between the simulation environment and the deep neural networks
during the training phase. This interface includes communication in both directions for the
reinforcement learning networks program to receive the sensory information such as the camera,
depth sensor, and other drone speed items. Additionally, the program is sending commands the
other direction to the simulator to tell the drone which way to move (left, right, forward, etc).

4.3 ACCEPTANCE TESTING
The ability to receive sensor information and video frames from the environment will be a
required test to demonstrate that the drone should also be able to operate in a real-world setting
without as opposed to just in the simulation. The other direction of information with drone
commands will also be an important test to ensure the program will be able to control the real
drone.

4.4 RESULTS

In the virtual training environment, the drone is focused on obstacle avoidance. So far, the drone is
having problems properly avoiding the wall obstacles, furthermore it also sometimes crashes into
the floor. As part of this iterative development process, we are revising the reward policy for the
reinforcement learning and looking to add a better network for determining the altitude of the
drone to avoid hitting the ground.

5 Implementation
The current implementation is focused on developing the reinforcement learning architecture and
reward function further in addition to adding new environments for simulation. The additional
environments will help the drone to generalize for better performance on future unseen
environments and conditions. This will be necessary especially once the transfer learning happens
next semester with going from simulation to the real world.

Based on the target timeline, next semester will be primarily focused on performing transfer
learning from the simulation to the real-world drone to fly in the real outdoors instead of a virtual

simulation environment. The transition to the real world will require porting the networks over to
run efficiently on a Jetson TX2 edge GPU computing device that will be on-board the drone. The
drone is using the same style of stereo depth camera that is used in the simulation, so this should
transfer over well for the drone to perceive the real world outdoors. The depth information will
pass through the networks the same way and the drone will perform the decisions of moving left,
right, forward, etc from the output of the neural networks. It is possible that we will then work to
adapt it to track additional objects other than just people. These objects could include cars, other
drones, or other moving objects. These would be trained in the simulation first and then transfer
learning would be applied to adapt this to run on those objects in the real world.

6 Closing Material

6.1 CONCLUSION

Currently the simulation team has completed setting up the environment in the unreal engine for
the simulation, while the reinforcement learning team has read through the current algorithm to
better understand what is causing crashing issues. The reinforcement learning team is actively
reading multiple research papers to learn more about reward function implementations to better
solve this crashing issue. Our upcoming plans are split into two for the different sub teams. The
simulation team will be working on creating various environments to run the simulation, starting
with a small empty room and then adding more obstacles in the environment down the line. The
reinforcement learning team will be working on the reward function implementation and then
work on the reinforcement learning algorithm to ensure the drone maintains a set distance for all
obstacles and tracks the person from a safe distance.

6.2 REFERENCES

[1]S. Bhagat and P. Sujit, "UAV Target Tracking in Urban Environments Using Deep Reinforcement
Learning", arXiv preprint, 2020. Available: 2007.10934 [Accessed 4 October 2020].

[2]K. Ko, "Visual Object Tracking for UAVs Using Deep Reinforcement Learning", 2020. [Accessed 4
October 2020].

[3]K. Lee, B. Vlahov, J. Gibson, J. Rehg and E. Theodorou, "Approximate Inverse Reinforcement
Learning From Vision-Based Imitation Learning", arXiv preprint, 2020. Available: 2004.08051
[Accessed 4 October 2020].

[4]W. Luo, P. Sun, F. Zhong, W. Liu, T. Zhang and Y. Wang, "End-to-End Active Object Tracking
and Its Real-World Deployment via Reinforcement Learning", IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 42, no. 6, pp. 1317-1332, 2020. Available:
10.1109/tpami.2019.2899570.

[5]J. Michels, A. Saxena and A. Ng, "High Speed Obstacle Avoidance using Monocular Vision and
Reinforcement Learning", Proceedings of the 22nd International Conference on Machine Learning,
pp. 593-600, 2005. [Accessed 4 October 2020].

[6]L. Xie, S. Wang, A. Markham and N. Trigoni, "Towards Monocular Vision based Obstacle
Avoidance through Deep Reinforcement Learning", arXiv preprint, 2017. Available: 1706.09829
[Accessed 4 October 2020].

6.3 APPENDICES

Figure 1. Diagram of the drone system

The pilot has access to an RC controller, which will send input to the RC receiver on the
drone. This input will go to the Pixhawk controller which then sends a message to the droneserver
application. This server application takes in commands from multiple locations, including another
user using ssh to access the drone, the reinforcement learning algorithm output, and as previously
mentioned the Pixhawk controller to send commands to the drone about movement. As shown in
the diagram, the rotors on the drone are directly controlled by the PIxhawk controller. The part our
team specifically is working on is the RLA, which takes in input from the ZedCamera mounted on
the drone and makes decisions on where the drone should go accordingly. Once it makes the
decision, it sends a signal to the DroneServer which then sends a signal to the Pixhawk controller
which controls the rotors.

Figure 2. Diagram of the system architecture

