IOWA STATE UNIVERSITY Team: sdmay21-33

. . . https: 21-33.sd. lastate.
Electrical and Computer Engineering ps://sdmay21-33.sd.ece.iastate.edu/

Reinforcement Learning with Graph Neural
Networks for Drone Collision Avoidance

Summary Simulation Environment:

e A common challenge for drones is avoiding e Tested and trained in Unreal Engine, a common
obstacles to prevent collisions. This is complex video game engine with realtime physics
problem as obstacles can vary in shape and size e Testing of the drone was performed in simulation

e \We focused on applying Reinforcement Learning for movement checks, vision check, and specific
(RL) algorithms for a drone to learn how to avoid test cases with custom environments
obstacles on its own in a simulated environment e AirSim API receives commands from our Python

e \We developed deep learning architectures for code and moves the drone in the simulation
comparison of convergence speed while providing image feedback
o Graph Neural Network (GNN) and e Created a custom wrapper to easily make
o Convolutional Neural Network (CNN) AimSim calls as an OpenAl Gym environment

e Overall, we created several custom wrappers to e The DQN with StableBaselines library could
iInterface between existing libraries and simplify easily make calls to our Gym environment
the training process

e Our custom GNN policy is built inside existing Containerizing the Setup:
tools for ease of use and correctness e Problem that Unreal Engine, AirSim, and etc

e The use case is specifically for research involve a very complex setup process

e \We created a Docker container that already has

Design Requirements: everything installed and setup

e Functional: e Docker container can run on multiple platforms,
o Drone can fly in simulation to solve issues between Windows and Ubuntu

e Non-functional: e Our container interfaces with the GPU through
o Drone avoids collision WSL to allow for full functionality and training

e Engineering Constraints: e This container will save many hours of setup
o GPU & simulation training speed time and debugging in future use

e Operating Environment:

o Virtual simulated environment Technical Tools and Resources:
e Standards: e Python3 and Anaconda manager
o This is a research-oriented project that e AirSim APl and Unreal Engine
iIncludes many customizations and few e StableBaselines3, PyTorch, and Numpy
standards that are applicable to RL e Resources: RL/GNN textbooks and publications
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Note: Additional specific resources can be found in corresponding final report



